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Perspectives (1) Automatic summarization of tweets clusters and profiles (2) learn to rank with background data
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Although our systems performed well in Author Profiling subtasks we may have missed something in the reputation dimensions task. By over-
predicting the main class our systems failed to handle the main classification issue of the task if we consider that the main goal was to find the
small classes.
Our author categorization runs are close-call with the baseline at the same level in both classification and clustering evaluation. There is still a
room for improvements but the performance level yield by our systems means that researchers are on a good way to tackle the problem.

The classification system used in the author ranking subtask performed competitively with regards to the other participants and the baseline
whereas it did not produced a real ranking output.

Combinations (LIA_AC_3 and LIA_DIM_5) are still lower than each system taken alone while we observed that each one brings good
information at the entity level.
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Submitted runs for each subtasks
1 run in Author Ranking

lia_ar_1 : Merge of HMM, Poisson and Cosine (per lang specific models)

3 runs in Author Categoraization

lia_ac_1 : Merge of HMM, Poisson and Cosine (per lang specific models)
lia_ac_2 : Merge of HMM and Cosine (global models)
lia_ac_3 : Merge of lia_ac_1 and lia_ac_2

5 runs in Reputation dimensions 

lia_dim_1 : Conditional random field
lia_dim_2 : Multilayer Perceptron
lia_dim_3 : Naive Word2vec
lia_dim_4 : Merge of HMM and Cosine (global models)
lia_dim_5 : Merge of lia_dim_1 to lia_dim_4
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