

LIA@Replab 2014 : 10 methods for 3 tasks

(i/)

Jean-Valère Cossu, Kilian Janod, Emmanuel Ferreira, Julien Gaillard and Marc El-Bèze Jean-valere.cossu @univ-avignon.fr – www.jeanvalerecossu.fr – www.lia.univ-avignon.fr

Motivations (1) try a large variety of speech and NLP approaches to tackle the reputation issue (2) use local outputs optimization

lia_dim_3 : Naive Word2vec lia_dim_4 : Merge of HMM and Cosine (global models) lia_dim_5 : Merge of lia_dim_1 to lia_dim_4

Average MAP in Author Ranking subtask

Precision / Reccal in Author Ranking subtask

UTDBRG_AR_4

UAAR 1

UAAR 1

Clustering Results in Author Categorization subtask

UAAR 1

UAAR 1

UAAR 1

UAAR 1

UAAR 1

UAAR 2

UAAR 1

UAAR 3
UAAR 3

Classification Results in Author Categorization subtask

Classification Results in Reputation Dimension Task

Conclusive analyses

References

0,7

0,8

Although our systems performed well in Author Profiling subtasks we may have missed something in the reputation dimensions task. By over- predicting the main class our systems failed to handle the main classification issue of the task if we consider that the main goal was to find the	Amigo & al : Overview of RepLab 2013 Bahl & al : Obtaining candidate words by polling in a large vocabulary speech recognition system (1988)
Our author categorization runs are close-call with the baseline at the same level in both classification and clustering evaluation. There is still a room for improvements but the performance level yield by our systems means that researchers are on a good way to tackle the problem.	Lafferty & al : Conditional random fields: Probabilistic models for segmenting and labeling sequence data (2001)
The classification system used in the author ranking subtask performed competitively with regards to the other participants and the baseline whereas it did not produced a real ranking output.	Mikolov & al : Efficient Estimation of Word Representations in Vector Space (2013)
Combinations (LIA_AC_3 and LIA_DIM_5) are still lower than each system taken alone while we observed that each one brings good information at the entity level.	Torres-Moreno & al : Opinion detection as a topic classification problem (2013) Wang & Li : Automatic Text Classification Based on Hidden Markov Modeland Support Vector Machine (2013)

Perspectives (1) Automatic summarization of tweets clusters and profiles (2) learn to rank with background data